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We propose a model for the elastic properties of RNA gels. The model predicts anomalous elastic properties
in the form of a negative Poisson ratio and shape instabilities. The anomalous elasticity is generated by the
non-Gaussian force-deformation relation of single-stranded RNA. The effect is greatly magnified by broken
rotational symmetry produced by double-stranded sequences and the concomitant soft modes of uniaxial
elastomers.
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I. INTRODUCTION

The study of the viscoelastic properties of networks of
flexible, synthetic polymers has for many years been a cen-
tral topic of polymer science. The classical Flory theory for
the elasticity of rubber and of gels treats these systems as
networks of nodes linked by highly flexible chains �1–3�.
Scaling relations for the viscoelastic moduli that result from
this model have been well confirmed �3�. The study of net-
works of biopolymers has provided a fresh impetus to the
field. Gels of semiflexible biopolymers, like F-actin, were
shown to obey novel scaling relations �4�. The focus of the
present paper is on the elasticity of a different biopolymer
system, namely a network or gel of RNA chains. The folding
of smaller RNA molecules has been already extensively dis-
cussed in the molecular biology literature in the context of
ribozymes �5�, but extended RNA gels have not received
much attention. The genome of single-stranded �SS� RNA
viruses, for instance, may form a very promising small scale
realization of an RNA gel, as discussed in the Conclusion. It
is the purpose of this paper to present a simple model for
RNA gels that indicates that such gels should have rather
unusual elastic properties that will distinguish them not only
from Flory-type gels but also from gels of semiflexible
biopolymers like F-actin.

A single-stranded �“SS”� RNA chain can be folded first
into a “secondary” structure that consists of the pattern of
optimal pairing of the bases of the chain �5�. This secondary
structure is represented as a planar, branched graph of du-
plexed double-stranded �“DS”� sequences linked by
“bubbles” and “stem loops” composed of unpaired bases. A
three-dimensional “tertiary” structure is obtained if one also
allows complementary pairing between the bases of different
bubbles and stem loops of the secondary structure. The
model we will study assumes a highly simplified tertiary
network topology composed of an array of rigid rods �the DS
complementary sequences� that are linked by flexible chains
�the SS sequences�. Two flexible chains emerge from either
of the two ends of each rod �see Fig. 1�. Models of this type
have in fact been used to describe the folding kinetics of
ribozymes �6�. A key ingredient of our model is that these
flexible chains are not assumed to have the elastic properties
of either a Gaussian chain or a semiflexible wormlike chain.
Instead, we will examine the elasticity of the network for a
general class of interaction potentials. Specifically, we will

consider chains that obey the force-extension curve of SS
DNA as measured by single-molecule micromechanics.

The particular network of rods and springs that we pro-
pose to investigate as a representation of complexed RNA is
displayed in Fig. 1. The rods are centered on an altered
square lattice. The angle � that an edge of this lattice makes
with respect to the vertical, as shown in Fig. 1, parametrizes
the overall characteristics of the lattice. If �, which ranges
between 0 and � /2, is equal to � /4 the lattice is square. At
either of the limits of �, the lattice has collapsed onto itself.
The edges of the unit cells of the lattice, which do not rep-
resent any physical quantity, are represented by grey lines in
the figure. The rods are thick solid lines, and the springs are
depicted as dashed lines connecting the ends of neighboring
rods. As shown in the figure, the length of the edges of the
underlying lattice is a, and the length of the rods is 2l.

The model belongs to a class of systems, namely uniaxial
and biaxial elastomers, that are known to have unusual elas-
tic properties. The internal rotational degrees of freedom pro-
duce what is known as “soft” elasticity in the form of large
shape changes under applied fields as well as a vanishing of
the Poisson ratio �7�. The anomalous elasticity of networks
with broken rotational symmetry is an unavoidable and fun-
damental feature according to a theorem by Golubovic and
Lubensky �8�. One of the aims of the present paper is to
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FIG. 1. The network of rods and springs that forms the basis of
the negative Poisson ratio system. As indicated in the figure, the
length of the sides of the underlying altered cubic lattice is a and
the length of the rods is 2l.
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examine the consequences of this theorem for a concrete
model. Specifically, we will explore precisely what physical
properties of the interaction potential characterizes anoma-
lous soft elasticity. We will argue in particular that control of
the soft elasticity can be achieved by altering the physical
properties of the non-Gaussian springs and that this can be
achieved in the context of RNA gels.

The proposed model can be viewed as a modified version
of a hexagonal lattice of hinged rods. It is actually known in
the material science literature that systems that can be repre-
sented by models of this type exhibit unusual elasticity. A
conventional hexagonal lattice, shown at the top Fig. 2, will
expand vertically when compressed horizontally if the rods
are rigid and freely hinged. On the other hand, the network at
the bottom of the figure—consisting of nonconvex hexagonal
units—contracts vertically when compressed horizontally.
The network is thus characterized by a negative Poisson ra-
tio. The conditions for constructing a network of hinged rods
that exhibits a negative Poisson ratio can be elegantly dem-
onstrated by the popular Hoberman sphere �9�, which main-
tains its spherical shape as it expands and collapses �10�. The
generic term for a material with a negative Poisson ratio is
“auxetic.” A negative Poisson ratio is known to be exhibited
by iron pyrites �11�, self-avoiding, fixed-connectivity mem-
branes �12�, monocrystalline zinc �13�, carbon nitride �14�,
polyethylene foams �15�, two-dimensional meshlike systems
�16�, structures composed of rotating rigid units �17� and in
network-embedded composites �18�. Biologically, a negative
Poisson ratio has been found to be exhibited by both skin
�19� and bone �20�.

II. POISSON RATIO OF A TWO-DIMENSIONAL
NETWORK OF RODS AND SPRINGS

We will start by exploring the properties of the model
shown in Fig. 1 as a two-dimensional network. We will rep-
resent a distortion of the lattice in terms of a strain tensor �J,
so that the displacement �r�i= ��xi ,�yi�, of a lattice vertex
originally at the location r�i= �xi ,yi� is given by

�xi = �xxxi + �xyyi �2.1�

and similarly for �yi. We will also allow the rods to rotate in
the plane by the angle �.

Consider, now, the triad of rods with connecting springs
shown in Fig. 3. Note that the underlying lattice is more
compressed along the horizontal direction than the lattice
shown in Fig. 1. As will be demonstrated below, the degree
of alteration of the square lattice is controlled by the require-
ment that the rod and spring network can be stabilized by an
osmotic pressure. The distance between the upper end of the
lower rod and the lower end of the rod on the right is equal
to

d1
2 = �a�xy cos � − 2l sin � + a sin � + a�xx sin ��2

+ �− 2l cos � + a cos � + a�yy cos � + a�yx sin ��2

�2.2�

and the distance between the upper end of the lower rod and
the lower end of the rod to the left is given by

d2
2 = �a�xy cos � − 2l sin � − a sin � − a�xx sin ��2

+ �− 2l cos � + a cos � + a�yy cos � − a�yx sin ��2.

�2.3�

The angle � in Eqs. �2.3� is the angle to which all the rods
rotate under the influence of the uniform distortion of the
lattice as parametrized by the constant strain tensor �J.

FIG. 2. Two types of hexagonal networks of hinged rigid rods.
The network shown at the top of the figure exhibits a positive Pois-
son ratio, in that it expands vertically when compressed horizon-
tally. The network at the bottom contracts vertically when com-
pressed horizontally and thus has a negative Poisson ratio.

FIG. 3. A triad of neighboring rods, connected in this figure by
two springs connected to the top end of the lower central rod. The
rods and the lattice are shown in an as-yet undistorted state. The
lattice is compressed horizontally as compared to the one shown in
Fig. 1.
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A. Non-Gaussian behavior of the springs

In order to facilitate numerical calculations, we will pa-
rametrize the interactions mediated by the springs in terms of
the square of the distance between the spring end points.
That is, we express the energy of the interaction in terms of
the variable x, where

x = d2 − d0
2. �2.4�

The quantity d is the distance between end points, and d0 is
the distance between end points in the equilibrium state.
Next, let V�d� be the interaction potential that represents the
free energy of an SS sequence connecting two points a dis-
tance d apart. We will expand V�d� in a Taylor series around
the equilibrium state x=0:

V��d0
2 + x� = V�d0� +

x

2d0
V��d0�

+
x2

8d0
3 �− V��d0� + d0V��d0�� + ¯

= �0 + �1x +
�2

2
x2 + ¯ . �2.5�

It is important to note that even if the interaction V�d� is
convex upward, so that V��d��0, the second order coeffi-
cient �2 in the expansion above can be negative. Consider,
for instance, the case of a simple power-law interaction en-
ergy of the form

V�d� = Cdp �2.6�

with C a positive coefficient and p a power greater than 1.
Then,

V��d0� = Cpd0
p−1 �2.7�

and

d0V��d0� − V��d0� = Cp�p − 2�d0
p−1. �2.8�

If p�2, then, assuming that the coefficient C is greater than
zero, the second order coefficient in Eq. �2.5�, �2, will be
negative. In the case of Gaussian chains with Hooke-law-
type harmonic interaction, �2 is equal to zero, as are all
higher order coefficients in the expansion of the interaction
in terms of the variable x. On the other hand, for a freely
jointed chain or a wormlike chain, �2�0.

Under the assumption that the interaction mediated by the
springs is always attractive, the angle � at which the rods tilt
must adjust in such a way as to minimize the sum of the two
distances d1 and d2. Taking the derivative of d1+d2 with
respect to � and constructing an extremum equation, we end
up with the relationship

8al cos ����yy + 1�sin � − �xy cos �� = 0. �2.9�

The strain tensor is assumed to be a small quantity. This
means that the solution to the equation above is, to an accu-
racy sufficient for our purposes,

� = �xy . �2.10�

The total energy associated with the interactions mediated
by the springs shown in Fig. 3 is then given by

E = �0 + �1��d1
2 − d0

2� + �d2
2 − d0

2�� +
�2

2
��d1

2 − d0
2�2 + �d2

2 − d0
2�2�

�2.11�

with � in Eqs. �2.2� and �2.3� as given by Eq. �2.10�.

B. Determination of the angle �, expansion of the energy in
strain coordinates, and calculation of the Poisson ratio

The next step is to expand the resulting expression to
second order in the strain tensor. At zeroth order, we are left
with the coefficient �0. To first order in �J we have the fol-
lowing contribution to the energy:

4a�1�a�xx sin2 � + �yy cos ��a cos � − 2l�� . �2.12�

The appearance of terms linear in the strain energy indicates
that the system has a tendency to spontaneously deform.
First, consider the case of a uniform contraction. In terms of
the strain tensor, this yields an energy going as �xx+�yy. Such
a uniform deformation can be countered by an osmotic pres-
sure 	 that increases as the monomer concentration grows
under contraction. If the coefficients of �xx and �yy in Eq.
�2.12� are equal to each other then osmotic pressure suffices
to completely balance the first order energy for d=d0 �the
equilibrium state� in Eq. �2.12�. On the other hand, if the
coefficients of �xx and �yy are unequal, then the system un-
dergoes a spontaneous shear transformation, which can only
be balanced by the application of anisotropic stress.

We assume that the only external stress acting on the net-
work is due to osmotic pressure. Given this presumption, the
resulting requirement on the linear coefficients in Eq. �2.12�
translates into an equation for the lattice angle � that is sat-
isfied when

� = arccos� l

2a
+�� l

2a
�2

+
1

2
	 . �2.13�

Two limits of the above expression are noteworthy. When l
=0, so the rods are infinitesimal in extent, then � as given by
Eq. �2.13� is equal to � /4, consistent with an underlying
square lattice. On the other hand, when l=a /2, we find a �
from Eq. �2.13� that is equal to zero, which implies a hori-
zontal collapse of the complex. In this limit, the rods are
exactly long enough that their tips touch in the event of such
a collapse of the lattice. Henceforth we will assume that l lies
in the range between 0 and a /2.

Assuming cancellation of the linear term, the energy is
now, at lowest nontrivial order, quadratic in the elements of
�J. This contribution to the quadratic energy is of the form


��J� = 

i,j,k,l

�ij,kl�ij�kl. �2.14�

In light of translational invariance, this energy will be the
same for the energy supplied by the two springs attached to
the upper tip of every rod in the complex, under the assump-
tion of a uniform strain. We have thus effectively calculated
the energy of interaction in the entire complex.
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The strain induced by an externally applied stress �J is the
solution to the set of equations

�

��ij

��J� = �ij . �2.15�

We will take the strain to be exerted in the y direction, so �yy
is the only nonzero element of the strain tensor. After solving
Eq. �2.15� for the elements of the strain tensor we can extract
the Poisson ratio  via the relationship

 = −
�xx

�yy
. �2.16�

Following a straightforward calculation we obtain the ex-
plicit result

 =
a2�a2 − 4l2��2

�a2 − l2 + al�2 + �l/a�2��1 + a2�a2 − 4l2��2

.

�2.17�

C. Poisson ratio when there are no rods

It is useful to consider certain limiting cases of Eq. �2.17�.
First, consider the case l=0, which corresponds to a network
in which the rods are replaced by point contacts. If we set
l=0 in the expression Eq. �2.17�, the expression for the Pois-
son ratio further simplifies to

a2�2/�1

1 + a2�2/�1
�2.18�

which predicts a negative Poisson ratio, if the ratio �2 /�1 is
negative. To check for stability of the lattice one can deter-
mine the eigenvalues of the energy matrix �J. When l=0, this
four-by-four matrix is degenerate, and there are two distinct
eigenvalues: a2�1−a4�2 and a2�1+3a4�2. Both eigenvalues
are positive, corresponding to a stable lattice, provided
−�1 /3a2��2��1 /a2, where we assume that �1�0. For �2 in
this range, the Poisson ratio varies from −1 /2 to 1 /2. It
follows that a moderately negative Poisson ratio is, in fact,
possible in a lattice consisting entirely of non-Gaussian
springs. Note that this is not related to the existence of inter-
nal rotational degrees of freedom.

D. Poisson ratio at general l

We now set l=0.45a. This leads to an equilibrium state
that is compressed horizontally as in Fig. 3. In Fig. 4 we
show  as a function of �2.

We have again checked the stability by computing the
determinant of the four-by-four matrix with elements �ij,kl.
Figure 5 shows a typical plot of the determinant as a function
of �2. The determinant vanishes at �2=−6.232, correspond-
ing to the emergence of a negative eigenvalue of the energy
matrix �J and the development of a mechanical instability in
the complex �21�. At that threshold value of �2, we find 
=−4.212 26, so a substantial negative Poisson ratio is indeed
possible close to a mechanical instability. Figure 6 shows the
determinant for an extended range of the interaction coeffi-
cient �2. As illustrated in that figure, the range of stability of
the energy matrix is bounded from above as well as below as
a function of �2.

If we compare these results with those in the case l=0 we
conclude that the broken rotational symmetry for l�0 has
greatly amplified the negative Poisson ratio produced by a
negative value of �2. There is indeed no intrinsic physical
bound on the Poisson ratio in an anisotropic solid �22�. The
amplification effect is most dramatic when �2 approaches the
threshold of the mechanical instability, at �2=−6.232. Note
though that according to Eq. �2.17� the Poisson ratio formally
is zero even at this critical point for a Gaussian network and
any other system with �2=0. It should be recalled here that
the Poisson ratio is zero in conventional nematic elastomers
�7�. One can compare the effect of a negative �2 to that of a
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FIG. 4. The two Poisson ratio of the two-dimensional lattice
according to Eq. �2.17�.

FIG. 5. The determinant of the elastic energy matrix �J when l
=0.45a, and �1 and a have been set equal to 1.

FIG. 6. The determinant of the energy matrix �J as a function of
�2, with l=0.45a and a and �1 set equal to 1. The range of stability
is indicated by the heavy line on the horizontal axis.
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small magnetic field applied to a magnet as one approaches
the Curie temperature. The divergence of the susceptibility
amplifies the effect of the applied field. In the next section
we will extend the notion of the sort of complex we have
been discussing to a three-dimensional system.

III. THREE-DIMENSIONAL NETWORK OF RODS
AND SPRINGS EMBODYING A NEGATIVE

POISSON RATIO

A. Preliminaries: Description of parameters

The way in which the three-dimensional network is con-
structed will be a generalization of the two-dimensional case.
Imagine a sheared version of a cubic lattice rotated so that
the z-axis is along a diagonal. A rod is placed at each vertex
of this lattice, and each end of this rod is connected to the
ends of the three rods that are closest to it by a spring having
a nonlinear force-extension relation. Figure 7 depicts a por-
tion of this lattice of rods, shown as short solid lines. The
springs are represented by dashed lines and the edges of the
lattice—shown for illustrative purposes only—are repre-
sented by grey lines. The z axis is along the principal diag-
onal, shown as a grey dashed and dotted line in the figure,
and the x axis is aligned with the projection in the x-y plane
of an edge of the cube. Three neighboring vertices of the
cube are indexed as shown in Fig. 8. If one were to interpret
the configuration illustrated in Figs. 7 and 8 in terms of an
RNA network, then, given that each rod is attached to three
strands, it would be necessary to assume that the rods repre-
sent “triplexed” segments of the molecule. Discarding this
exotic version of complexed RNA, we interpret the organi-
zation illustrated there as a kind of “averaged” version of a
structure in which each rod terminates in two springs, as
shown in Fig. 1. The actual connectivity is approximated by
the three springs shown in Fig. 8, each carrying a fraction of

the restoring energy stored in the two springs in the actual
structure.

The rod with index 0 is assumed to be located at the
origin. The coordinates of the corners on which the neigh-
boring rods sit are given by

x1 = a cos � , �3.1�

y1 = 0, �3.2�

z1 = a sin � , �3.3�

x2 = A cos � cos�2�/3� , �3.4�

y2 = a cos � sin�2�/3� , �3.5�

z2 = a sin � , �3.6�

x3 = a cos � cos�4�/3� , �3.7�

y3 = a cos � sin�4�/3� , �3.8�

z3 = a sin � . �3.9�

The quantity a in Eqs. �3.1�–�3.9� is the length of a cube
edge. The quantity � is the angle that the edges of the cube
in Fig. 8 make with respect to the x-y plane. In the case of an
unsheared cubic lattice, this angle is equal to arctan�1 /�2�.
Note that when �=� /2, the edges connecting the site at the
origin to the three neighboring ones are all vertical, so that
the neighboring sites all lie at exactly the same location.
Each edge in the cubic lattice has length a and the length of
the rods is 2l, again as shown in Fig. 8. Initially, the rods
point along the z axis. However, we will assume that when
the lattice shears the rods change orientation. The direction
in which the rods point will be described in terms of the
standard spherical angles � and �. See Fig. 9 for the repre-
sentation of the angles � and �. The next step is to allow the
lattice to distort. As in the previous section we represent the

FIG. 7. Portion of the cubic lattice, shown unsheared here, with
the rods at the vertices. The “springs” connecting the vertices are
shown as dashed lines. The edges of the cubic lattice in which the
rods are embedded are shown as grey lines. Note that these edges
do not represent actual physical structures. Only those springs that
connect two rods shown in the figure are depicted. Finally, a prin-
ciple diagonal, lying along the z axis, is shown as a dashed and
dotted line.

FIG. 8. Three vertices of the cubic lattice with associated rods
and springs attached to them. The numbers are the indices of the
vertices. As in Fig 7, the springs are shown as dashed lines.

ψ

θ

FIG. 9. The angles � and �. All three edges shown in the figure
have an orientation with respect to the horizontal plane.
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distortion in terms of a strain tensor �J, so that placing one of
the vertices of the lattice at the origin, the displacement
�r�i= ��xi ,�yi ,�zi�, of any other lattice vertex originally at
the location r�i= �xi ,yi ,zi� is given by

�xi = �xxxi + �xyyi + �xzzi �3.10�

and similarly for �yi and �zi.

B. Determination of the angles �, �, and �

First, we calculate the quantities �xi ,yi ,zi� for each of the
springs shown in Fig. 8. Then, we expand the energy to first
and second order in the �xi ,yi ,zi�. The resulting expression is
then expanded once again, now to second order in both the
strain tensor �J and the rotation angle �. As both quantities are
expected to be small, we restrict our consideration to terms
that are at most quadratic in either one or both of them. The
next step is to determine the angle �, �shown in Fig. 9� by
which the lattice shears. This angle is again controlled by the
requirement that the lattice, in the absence of any imposed
stress, can be stabilized by an osmotic pressure 	, that
couples only to the total volume of the lattice, or in other
words to the combination Tr �J=�xx+�yy +�zz.

If we expand the energy of the lattice to first order in �J
and zeroth order in �, we obtain the following expression:

3a2��xx + �yy�cos2 � + 6a�zz sin ��a sin � − 2l� .

�3.11�

The requirement that this reduce to a function of the trace of
the strain tensor only leads to a quadratic equation for sin �.
The solution to this equation is

� = arcsin�2l + �3a2 + 4l2

3a
	 � �0�l/a� . �3.12�

It is useful to consider the two limits of the above expres-
sion. When l→0, the argument of the arcsin reduces to
1 /�3, which is consistent with an arctangent equal to 1 /�2
and a cubic lattice. On the other hand, as l→a /2, the angle �
goes to � /2, which means that the lattice collapses onto
itself. In the latter limit, the rods are long enough that they
touch end to end when that collapse takes place.

Inserting the value of � given by the right hand side of
Eq. �3.12� into the expression �3.11�, we find for the depen-
dence of the energy on uniform dilations of the lattice

2

3
��xx + �yy + �zz��3a2 − 4l2 − 2l�3a2 + 4l2� �3.13�

so the equation of state of the system is

	v0 =
2

3
�1�3a2 − 4l2 − 2l�3a2 + 4l2� , �3.14�

where

v0 = a3�3�3/2�cos2 � sin � =
�3a2 − 8l2��3a2 + 4l2 − 16l3

3�3

�3.15�

is the volume per rod in the lattice. As l→a /2, the expres-
sion multiplying the trace of the strain tensor vanishes, and
the linear dependence of the energy on uniform dilations of
the lattice is lost. The osmotic pressure 	 approaches the
limiting value 2�1 /�3a.

In light of this initial adjustment of the lattice, the next
step is to determine the extent to which the lattice responds
to an external stress. The response manifests itself in three
quantities: the strain tensor �J, the rod tilt angle �, and the
azimuthal angle �, of the rods. As it turns out, the azimuthal
angle appears only in the term that is first order in �, and the
form of that term is A cos �+B sin �, where A and B are
linear functions of the strain tensor and general functions of
the angle �. This expression is minimized when �
=arctan A /B and is equal in this case to −�A2+B2. The
second-order-in-� contribution to the energy of the deformed
lattice is equal to

6al�2al�2�cos �0�l/a��2 + �1 sin �0�l/a��2 � D2�2.

�3.16�

If we denote by D0 the portion of the deformation energy
that is zeroth order in � and second order in the strain tensor,
the net free energy as a function of the polar angle is

D0 − ��A2 + B2 + D2�2. �3.17�

Minimizing Eq. �3.17� with respect to �, we end up with our
final result for the dependence of the energy on the strain
tensor �J in the uniformly strained lattice. In terms of the
quantities defined above, the energy has the form

D0 −
A2 + B2

4D2
= 


i,j,k,l
�ij,kl�ij�kl � 
��J� . �3.18�

As indicated in Eq. �3.18�, the energy of the uniformly dis-
torted lattice with the angles �, �, and � relaxed to the val-
ues dictated by energy minimization and lattice stabilization
is purely quadratic in the strain tensor. The tensorial quantity
�ij,kl is symmetric with respect to interchange of the index
pairs ij and kl. The response of the system of rods and
springs to an externally generated stress tensor �J follows
from the solution to the set of linear equations

�
��J�
��ij

= �ij . �3.19�

Given the overall anisotropy of the lattice, symmetry argu-
ments yield only restricted information. If we orient the z
axis along the direction defined by the rods in the unstressed
lattice, then symmetry arguments tell us that a stress entirely
in the z direction results in equal values of the strain tensor
components �xx and �yy, while �xy =�yx=0.

C. Poisson ratios for l=0

Once again we consider the case of a lattice consisting of
springs only, in which the rods are replaced by point connec-
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tions. For l=0, the Poisson ratio of interest becomes

 =
4�a2�2/�1�

3 + 4�a2�2/�1�
�3.20�

and the determinant of the energy matrix is

det �J = 512a18�1
9�1 +

a2�2

�1
�3

. �3.21�

This means the energy matrix is associated with a stable
equilibrium state as long as a2�2 /�1�−1 /2. Figure 10 is a
plot of the Poisson ratio as given by Eq. �3.20� in the range
of stability of the energy. The limits of this quantity are 1 as
a2�2 /�1→� and −2 as a2�2 /�1→−1 /2, which are the limits
of the Poisson ratio in an isotropic solid. This means that, as
in two dimensions, broken rotational symmetry is not essen-
tial for the negative Poisson ratio.

D. Poisson ratios for lÅ0

To explore the properties of the Poisson ratio for l�0, we
will focus on the exponent p in the power law interaction
�2.6�. Consider the graph shown in Fig. 11, which is of the
Poisson ratio, defined as

 = −
�xx + �yy

�zz
�3.22�

in the case of a stress entirely in the z direction ��ij =0 except
for �zz�. The length l of the rod has been set equal to 0.4a.
Note that the Poisson ratio passes through zero as the power
law passes through the power associated with the Gaussian
spring. When p�2, the Poisson ratio is negative, which
means that the lattice system resists shearing.

Figure 12 is a graph of the Poisson ratio when l=0.45a as
a function of p. The range of stability, i.e., of a positive
determinant for �J, is for p�1, with p=1 the location of the
onset of instability. Recall that in the two-dimensional case,
 approaches a finite negative value at the point of instabil-
ity. From Fig. 12 we see that the Poisson ratio diverges to −�
at the instability threshold. The amplification effect of the
rotational degree of freedom in producing a large negative
Poisson ratio is thus much more pronounced in three dimen-
sions. By “tuning” the physical properties of the non-
Gaussian springs it is possible to dramatically alter the elas-
tic response of the network.

IV. RNA IN NETWORKS AND A NEGATIVE POISSON
RATIO

In this conclusion, we will apply the results of the last
section to RNA networks and discuss the consequences in
terms of soft elasticity and negative Poisson ratios. In Secs.
II and III we learned that �2 functions as a control parameter
for elasticity. If �2 is positive, one obtains conventional elas-
ticity. As noted in the Introduction, gels of flexible and semi-
flexible polymers are conventionally modeled as networks of
Gaussian chains, wormlike chains or freely jointed chains,
all of which have �2�0. If �2 is negative, we predict a range
of anomalous elasticity, with negative Poisson ratios termi-
nating in a mechanical instability at a critical value for �2, at
which point  diverges to −�. Is it realistic for a biopolymer
network to have a negative �2? The �2 parameter can in
principle be determined from the force-extension curves of
the nonlinear springs. For an RNA network of the type
shown in Fig. 1, this would be the force-extension curve of
single stranded RNA. Force-extension curves have been
measured for single-stranded RNA and folded RNA mol-
ecules �23� but not yet for long single-stranded chains. Such
measurements have been performed for single-stranded DNA
strands of about 104 bases �24�. A typical set of results, taken
from �24� is shown in Fig. 13. The force-extension curve
rises rapidly when the extension reaches the contour length.
This is preceded by a range of extensions for which the force
is relatively constant, which may be due to progressive loss
of stacking interaction. The force-extension curve for small
extensions is presumably dominated by entropic elasticity.
We fitted the measured data with a fifth order polynomial

FIG. 10. The Poisson ratio as a function of a2�2 /�1 when l=0.
The asymptote of 1 is also indicated.

FIG. 11. Graph of the Poisson ratio vs the exponent p of the
power law in Eq. �2.6�.

FIG. 12. The Poisson ratio, plotted against the exponent p in Eq.
�2.6�. Here p ranges from 0 to 3. As noted in the text, a value of p
less than 1 is inconsistent with mechanical stability.
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form, from which we were able to extract the quantities �1
�in pN /m2� and �2 �in pN /m4�, shown in Figs. 14 and 15.

The �2 control parameter is indeed negative for extensions
less than 3 m. It should be noted that �1 and �2 in general
are expected to be quite sensitive to solvent conditions. We
can now make use of the methods described above to com-
pute the Poisson ratio for given ratio l /a, and we find that
there is indeed a negative Poisson ratio over the full range of
values of the length parameter a, the value of l /a having
been fixed at 0.45 �see Fig. 16�.

These results are, of course, merely illustrative, but they
demonstrate that RNA should be a beautiful “laboratory sys-
tem” for the study of gels with anomalous elastic properties.
As Fig. 15 shows, one can tune the control parameter �2 by
adjusting the extension, which can, in turn, be achieved via
changes in the osmotic swelling pressure of the system. The
second key parameter, the l /a ratio, can be “programmed”
into the RNA molecules by alternating random sequences
with complementary homopolymer sequences of prescribed
length �e.g., strings of C monomers alternating with strings
of G monomers�. The most challenging feature would be to
generate alignment between the rods to produce a nematic
elastomer. Curiously, large SS RNA molecule n the form of
1400 base-long viral genomes are found to be quite aniso-
tropic according to low angle x-ray diffraction and light scat-
tering studies �26�. This suggests that large SS RNA mol-
ecules may be naturally anisotropic. Assembly of the gel
under mild shear flow may enhance this natural anisotropy.

In summary, RNA gels are expected to be rich laboratory
systems for the study of fundamental elasticity.

A. Effects of disorder

The systems that we have considered in this paper are
anisotropic and ordered. The effects of structural disorder,
likely to occur in systems such as RNA gels, constitute an
important issue. Through their secondary structure, RNA
molecules indeed are structurally heterogeneous. Quenched
disorder is known to have nontrivial effects on the elastic
properties of conventional isotropic gels, such as the “butter-
fly effect” in small-angle neutron scattering �27�. The model
explored here treats large RNA molecules as a linked net-
work of orientationally ordered rods. Experiments on nem-
atogenic gels of this sort, originally cross-linked in the iso-
tropic phase, demonstrate that such gels, in fact, lose their
long-range orientational order by the action of the quenched
random stresses; the sample breaks up into a polydomain
structure. Under an applied stress, a structural change can
take place towards a more ordered monodomain structure,
the PM transition �28�. The theoretical study by Uchida �29�
on the effects of quenched disorder on nematic gels, in terms
of soft modes, confirms that the disorder destroys long-range
orientational order and that external stress can partially re-
store orientational order. Quenched disorder thus appears to
play an even more important role for nematogenic gels.

The focus of this paper is on the Poisson ratio. Assume
that, in the absence of external stress, disorder suppresses the
long-range orientational order of a large RNA molecule. The
structure breaks up into a polydomain sample. One can still
apply the results obtained here to individual domains. If

FIG. 14. The quantity �1 as defined in Eq. �2.5� and as derived
from the fitting curve in Fig. 13.

FIG. 15. The quantity �2 as defined in Eq. �2.5� and as derived
from the fitting curve in Fig. 13.

FIG. 16. The Poisson ratio  derived from the parameters �1

and �2 displayed in Figs. 14 and 15. The ratio l /a is fixed at the
value 0.45. Note that the parameter a on the horizontal axis of this
plot refers to the distance between rod centers and does not coincide
with the extension shown in Figs. 14 and 15.

FIG. 13. Force vs extension data for a segment of single-
stranded charomid DNA �25� with a backbone length of 5.7 m in
one millimolar phosphate buffer. The data were extracted from Fig.
1 of �24�. Also shown in this figure is a fifth order polynomial fit to
the data.
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these domains have a negative Poisson ratio, then the aggre-
gate of elastically coupled domains is expected to have a
negative Poisson ratio as well. We believe, but have not
proven, that a simple orientational average over different do-
main orientations should constitute a reasonable approach to
the inclusion of the effects of disorder on Poisson’s ratio. It is
obvious, however, that in the presence of external stresses,
the Poisson ratio will have a strong “signature” at the PM
transition. The description of that signature would require a
full treatment of structural disorder, for example using the
method of Uchida �29�.

B. Implications for viral assembly

It is interesting to speculate about possible consequences
of a negative Poisson ratio for RNA gels. A curious problem
of viral assembly is the large discrepancy between the den-
sity of the genome in solution and the same genome encapsi-
dated by the virus’s protein shell. Encapsidation proceeds by
self-assembly: a solution of capsid proteins and viral RNA
molecules will spontaneously assemble to form infectious
viruses under physiological conditions. The assembly is
driven by generic electrostatic affinity between the proteins
and the RNA molecules, though specific interactions are re-
quired to initiate assembly, see, for instance, �30�. The sce-
nario for the encapsidation of single-stranded RNA genomes
into spherical viruses is not fully understood, but Fig. 17
indicates a likely scenario. A partially condensed RNA mol-
ecule forms a condensation surface for capsid proteins of
opposite �i.e., positive� charge, and a curved shell starts to
form. The challenge for the assembly process is how com-
paction of the genome can be achieved. If the RNA material
had a positive Poisson ratio, then compaction of the genome
at the nucleoprotein interface by the electrostatic affinity
would produce swelling of the remainder of the molecule
that is not in close contact with the growing shell. It would

seem that completion of assembly is not possible. A negative
Poisson ratio, on the other hand, would lead to collapse of
the RNA material into the shell. It would be fascinating if
model systems could be developed with, for instance, RNA
gels in contact with a positively charged substrate to verify
this scenario. We conclude that RNA gels with negative Pois-
son ratios would be well adapted for easy encapsidation.
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